# Coastal Engineering Design in the Caribbean A Case Study -Palisadoes Sea Defences



Smith Warner International Limited
Costal Engineering
Kingston - Jamaica

# Ia. Project site







# 1b. Project site - Close up



Detail of the Palisadoes strip

## 2.1 Understanding of Site geology

- Original date of formation unknown, ~ 4000 years
- Port Royal and relict cays were once totally separated from the mainland
- Westward longshore currents carried sediments from rivers in the east to form the Palisadoes. These Cays served as "anchor" points



# 2. Background2.2 Historical natural shoreline changes

- Natural coastal processes appear to have closed the spit as early as 1722
- Hurricanes caused breaches (e.g. Mapping by Gascoine in 1728)
- However, the spit had closed completely by 1788
- In 2004 Ivan almost caused a complete breach of the spit



# 2. Background2.3 History of artificial modifications

- Boulders along shoreline and other interventions of unknown date
- After Hurricane Charlie (1951), a groyne field (9 structures) was placed to stabilize 850 m of the most vulnerable section but these deteriorated over the years and ...
  - were damaged by Hurricane Ivan
- A Cuban Team was comissioned to provide a design for Palisadoes sea defenses (1 in 25 year return period)

Emergency works (1 in 5 year) placed in anticipation of final designs



Groin field - 2002



2004, post-Ivan



Emergency Works - May 2008

- Impact on costal areas
  - High waves
  - Storm surge
  - X-shore sediment transport
- Recently in Jamaica, Hurricanes Ivan (2004), Dean (2007), and Tropical Storm Gustav (2008) caused extensive damage



Ivan, 2004



Dean, 2007



Gustavo, 2008

### 2.4 Hurricane impacts (cont'd)

The effects of Hurricanes Ivan and Dean are summarized below:

| Hurricane Ivan (2004)                                    | Hurricane Dean (2007)                                  |  |
|----------------------------------------------------------|--------------------------------------------------------|--|
| Sand erosion & emergence of previously buried structures | 40,000 m³ of sand deposited onto the highway.          |  |
|                                                          | Generated 2 to 3 m of storm surge at the project site. |  |

In addition, both storms caused onshore transport of sand that was deposited at the north-eastern end of the Palisadoes, and overwashing into the bay side of the spit. Local authorities fear that if another hurricane hits the site, there is a very high risk that a breach may develop and close the highway.

### 2.4 Hurricane impacts



Satellite image of Hurricane Ivan, at 10th September 2004 (NOAA/NHC database).

## 2.4 Hurricane impacts



Satellite image of Hurricane Dean, at 19th August 2007 (NOAA/NHC database).



# 2.4 Hurricane impacts













## 3. Problem definition and design constraints

- The dune system and the shoreline of the Palisadoes Road had suffered extensive damage and erosion, compromising the only land-based access to the NMIA and to Port Royal.
- The solution to this problem should be expected to be a combination of technically efficiency and least cost.
- The solution should seek to provide protection to the access roadway along the Palisadoes spit, for a given level of risk acceptance.
- The solution should seek to work, as much as possible, in harmony with the natural environment along this stretch of land.

## Recommended Methodology Extreme wave climate Wave Hindcast - NHC database Daily Wave Climate (include climate change) WaveWatch-III Storm Surge Deep Water waves (include GSLR) Wave Transformation Sediment Topo and Define the concept Transport (x-shore bathy surveys Sketch plan and alongshore) Design of Evaluate Coastal Impacts of Structures Works Sketch X-sections

# 4. Coastal Processes4. I Daily Wave Climate

- Wave Watch III model – NOAA
- Statistical analysis probability of exceedance for directions E and SE
- Larger waves from E but shorter periods

#### NOAA Wave Watch III nodes for Jamaica.



#### Probability Exceedance Values (1% and 10%).

| Direction | Probability<br>Exceedance | Hs (m) | Tp (5) |
|-----------|---------------------------|--------|--------|
| E         | 1%                        | 2.8    | 7.9    |
|           | 10%                       | 2.0    | 7.6    |
| SE        | 1%                        | 2.5    | 8.2    |
|           | 10%                       | 1.7    | 7.3    |

## 4.1 Daily Wave Conditions

# --- SWAN MODELING RESULTS --Palisadoes - 1% Exceedance from WaveWatch-III

#### Investigation Details:

Hs = 2.76 m Wind speed = 8.88 m/s Tp = 7.94 s Wind direction = E

Dir = E





## 4.1 Daily Wave Conditions

Investigation Details:

### --- SWAN MODELING RESULTS ---Palisadoes - 1% Exceedance from WaveWatch-III

Hs = 2.49 mTp = 8.23 sDir = SE

1985500-

1985000-

1984500-

1984000-

1983500-

1983000-

Wind speed = 9.38 m/s Wind direction = SE





Depth countours in meters Direction where waves are going to Prepared by: Gustavo Oliveira

# 4. Coastal Processes 4.2.1 Extreme Wave Climate

- HurWave (ın-house program)
  - scans NHC database for storms within specified distance of site
  - Parametric models are used to calculate wave properties
  - Statistical distribution are fitted to exceedance probability plots
  - Return period waves are retrieved
- Wave conditions are described in terms of return periods (average time period between successive occurrences of an event being equalled or exceeded)
- The greater the return period, the larger the design significant wave height

| Return<br>Period<br>(years) | Design Life (years) |     |     |
|-----------------------------|---------------------|-----|-----|
|                             | 25                  | 50  | 100 |
| 25                          | 64%                 | 87% | 98% |
| 50                          | 40%                 | 64% | 87% |
| 100                         | 22%                 | 39% | 63% |





## 4.2.3 Nearshore Transformation of Waves - 100 year return period

# --- SWAN MODELING RESULTS --Palisadoes Rehabilitation - 100 year storm - T+12 hours

#### Investigation Details:

Hs = 15.6 m Wind speed = 52.65 m/s Tp = 18.56 s Wind direction = ESE

Dir = ESE Water Level (IBR+HAT+GSLR) = 1.25





# 4.2.3 Nearshore Storm Surge - 100 year return period

# --- SWAN MODELING RESULTS --Palisadoes Rehabilitation - 100 year storm - T0 + 12h

#### Investigation Details:

Hs = 15.6 m Wind speed = 52.65 m/s Tp = 18.56 s Wind direction = ESE

Dir = ESE Water Level (IBR+HAT+GSLR) = 1.25





### 4. Coastal Processes

### 4.3 Sediment transport

- Longshore sediment transport computed (Litdrift Danish Hydraulic Institute)
- The calculated net potential transport ranged from 560 to 17,600m<sup>3</sup>/year.
- The largest transport rates are found along the most critical sector, oriented WNW-ESE.



## 5. Re-assessing the concept

- Following Hurricane Dean, the construction of a revetment was halted in favour of an emergency works programme located along the most critical sector
  - Stones of size 1.4t Cat 1
- The works could however, serve as the inner core for a final revetment design





# 5. Design options for consideration5. I Shoreline revetment





# 5. Design options – Site Considerations 5. I Shoreline revetment

- In both alternatives, the emergency works serve as the inner core to the primary revetment structure, thereby reducing required materials and costs.
- However, the size of the stones in place is above what should be acceptable as the inner core, due to the potential of exaggerated wave transmission through the core.
- The entire X-Section of the structure must be properly considered, to minimise wave transmission and maximise wave energy dissipation.



# 5. Design options - Eco-System Based Approaches 5.2 Nourishment and dune formation

- Some consideration could be given to the re-creation of a dune system from the east end of the proposed revetment to the gypsum company pier.
- One product that could be considered in a dune/highway conceptual soft structure design for the Palisadoes strip, is "Geotube".



## 6. Design Confirmation - Physical Modelling

- A 2-D physical hydraulic model study of the proposed coastal woeks was tested in the Canadian Hydraulics Centre (CHC Ottawa).
- The two hurricanes (Dean and Ivan) were used to test the preliminary design.
- In order, to represent the passage of the storms south of Jamaica, the storms were divided into 5 segments of 3 and 6 hours, for Dean and Ivan (100-year storm), respectively.
- A sub-sea profile running from deep-water up to the shoreline at the critical (erosion) sector and following the path of waves through the refraction process was used to extract the relative shoreline slope parameters.
- An appropriate scale for the model was selected, so as to minimise scale effects.

# 6. Physical Modelling



Frontal view of the physical model For Hurricane Dean.

Side view of the physical model for Hurricane Dean.

# 7. Completion of Preliminary Design

